

No AMBE-2/01-CPR-13-1

1) Code of the product type: \$235JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6
 T+34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

HGaliudo.

Date: 1.12.2021

Essential characteristic		Perforn	nance	Harmonised technical specification	
1	ı		EN 100	056-2	
	1/		EN 10		
Toloronoo on		N	EN 10		
Tolerances on dimensions and		J	EN 10		
shape			2	, <u>-</u> , 0	
	Nominal thic	kness (mm)	Values	(MPa)	
-	>	≤	mi	n	_
		16	23		
-	40	40	22		
Yield strength	16				
	40	63	21		
[<u> </u>	63	80	21		
l L	80	100	21		
-	100	140	19	5	
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
	=3	100	360	510	
Tensile strength	100	140	350	500	
	100	1-10	000		_
	Nominal thickness (mm)		Values	s (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	26		
Liongunon	40	63	25		
l	63	100	24		
-	100	140	22	2	
	Nominal thic	kness (mm)	Value	s (J)	
Impact strength	>	≤	mi	n	
	•	140	27 / 2	20°C	
	Nominal thic		Values		
	>	≤	ma	ax	
Weldability		30	0,3		
I	30	40	0,3		
	40	140	0,3		
			·		
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	
composition)		140		C: 0,17-0,20	
				Mn : 1,40	
				P: 0,040	
				Cu: 0,55	
				S: 0,040	
				N: 0,012	

No AMBE-2/02-CPR-13-1

1) Code of the product type: \$235J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Halingo.

Date: 1.12.2021

Essential characteristic		Perforn	nance	Harmonised technical specification	
1		_	EN 100	056-2	<u> </u>
ŀ	1/		EN 10		
Tolerances on	IP		EN 10		
dimensions and	Ų	J	EN 10)279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	mii	n	
Ī		16	23	5	
ļ ·	16	40	22	5	
Yield strength	40	63	21:	-	
	63	80	21:		
<u> </u>	80	100	21:		
	100	140	19		_
	100	140	10	J	
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
Tonoile etraneth	=3	100	360	510	
Tensile strength	100	140	350	500	
	Nominal thickness (mm)		Values	s (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	26		_
	40	63	25		
	63	100	24		
	100	140	22	<u>′</u>	-
	Nominal thic	kness (mm)	Value	s (J)	
Impact strength	>	≤	mii	n	
		140	27 / 0)°C	
	Nominal thic	kness (mm)	Values	s (%)	
	>	≤	ma		
Weldability		30	0,3		
	30	40	0,3		
	40	140	0,3	8	_
					_
Durability	Nominal thic		Values	• •	
(Chemical	>	≤	min	max	_
composition)		140		C: 0,17	
				Mn : 1,40	
				P: 0,035 Cu: 0,55	
				S: 0,035	
				N : 0,012	

No AMBE-2/03-CPR-13-1

1) Code of the product type: \$235J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6
 T+34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Hause

Date: 1.12.2021

ess (mm) ≤ 16 40 63 80 100 140	EN 100 EN 10 EN 10 EN 10 Values (mir 233 225 215 215	(MPa)	
≤ 16 40 63 80 100	Values (mir 238 228 218	(MPa)	
≤ 16 40 63 80 100	Values (mir 238 228 218	(MPa)	
≤ 16 40 63 80 100	Values (mir 238 228 228 218 218 218 218 218 218 218 21	(MPa) 1 5 5	
≤ 16 40 63 80 100	mir 238 228 218 218	n 5	
≤ 16 40 63 80 100	mir 238 228 218 218	n 5	
16 40 63 80 100	238 228 218 218	5	
40 63 80 100	225 215 216	5	
63 80 100	215 215		
80 100	215		
80 100		5	
100		5	
	215		
	195		
ess (mm)	Values (
≤	min	max	
100	360	510	
140	350	500	
ess (mm)	Values	s (%)	EN 10025-1:2004
> ≤		า	
40	26		
63	25		
100	24		
140	22	!	
ess (mm)	Values	s (J)	
≤	mir	า	
140	27 / -2	:0°C	
ss (mm)	Values (%)		
≤	ma	х	
30	0,3	5	
40			
140	0,38		
ess (mm)	Values (%)		
<	min	max	-
140			┪
	d	Cu : 0,55	
	\$	3:0,030	
			1
	140 ess (mm) ≤ 140 ess (mm) ≤ 30 40 140 ess (mm) ≤ ≤	140 22	140 22 sss (mm) Values (J) ≤ min 140 27 / -20°C sss (mm) Values (%) ≤ max 30 0,35 40 0,35 140 0,38 sss (mm) Values (%) ≤ min max

No AMBE-2/04-CPR-13-1

1) Code of the product type: \$275JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Hanno

Date: 1.12.2021

Essential characteristic		Perfo	rmance	Harmonised technical specification	
			EN 1	0056-2	-
	1/	Н		10034	
Tolerances on	IP	N		10024	
dimensions and	Į	J	EN ·	10279	
shape					
	Nominal thic	kness (mm)	Value	s (MPa)	
l t	>	≤	n	nin	
		16	2	75	
	16	40	2	65	
Yield strength	40	63		55	
	63	80		45	
	80	100		35	\dashv
<u> </u>	100	140		25	
l	100	140		20	
	Nominal thic	kness (mm)	Value	s (MPa)	
1	>	≤	min	max	
Tanaila atranath	=3	100	410	560	
Tensile strength	100	140	400	540	
					_
	Nominal thickness (mm)		Valu	es (%)	EN 10025-1:2004
Ī	>	≤	min		
Elongation	=3	40	2	23	
Liongation	40	63	22		
l .	63	100		21	
	100	140		19	
	Nominal thic	kness (mm)	Valu	es (J)	
Impact strength	>	≤	n	nin	
1	· · · · · · · · · · · · · · · · · · ·	140	27 /	20°C	
	Nominal thic	kness (mm)	Valu	es (%)	
Ī	>	≤	m	nax	
Weldability		30	0	,40	
· •	30	40	0	,40	
	40	140	0	,42	
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	
composition)		140		C: 0,21-0,22	
				Mn : 1,50	
				P: 0,040	1
		1		Cu: 0,55	ı
1				0 - 0 040	
				S: 0,040 N: 0,012	

No AMBE-2/05-CPR-13-1

1) Code of the product type: \$275J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Hando

Date: 1.12.2021

Essential characteristic		Perforn	nance	Harmonised technical specification	
1	ı		EN 100)56-2	-
	1/		EN 10		
Tolerances on		N	EN 10		
dimensions and		J	EN 10		
shape			2.1.10		
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	mir	n	
		16	27		
-	40	40	269		
Yield strength	16				
	40	63	255		
[<u> </u>	63	80	24		
l L	80	100	23		
-	100	140	225	5	
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
	=3	100	410	560	
Tensile strength	100	140	400	540	
F	100	140	400	0-10	
F					
	Nominal thickness (mm)		Values	s (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	23		
Liongunon	40	63	22		
l <u></u>	63	100	21		
-	100	140	19)	
	Nominal thic	kness (mm)	Values	s (J)	
Impact strength	>	≤	mir	n	
[140	27 / 0		
	Nominal thic	kness (mm)	Values	s (%)	
	>	≤	ma	Х	
Weldability	·	30	0,4		7
	30	40	0,4		\dashv
	40	140	0,4		\dashv
			5,	_	
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	
composition)		140		C: 0,18	
				Mn : 1,50	
				P: 0,035	
				Cu: 0,55	
				S: 0,035	
			Į.	N: 0,012	

No AMBE-2/06-CPR-13-1

1) Code of the product type: \$275J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

HGaludo

Date: 1.12.2021

Essential characteristic		Perform	nance	Harmonised technical specification	
			EN 100	056-2	•
	1/	Н	EN 10030-2 EN 10034		
Tolerances on	IP	N	EN 10		
dimensions and	l	J	EN 10	279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	mir	า	
		16	275	5	
	16	40	265	5	
Yield strength	40	63	255		
	63	80	245		
[80	100	235		\dashv
-	100	140	225		=
	100	1-10			
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
Tensile strength	=3	100	410	560	
Tensile strength	100	140	400	540	
_					
	Nominal thickness (mm)		Values	s (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	23		_
	40	63	22		_
-	63	100	21		_
-	100	140	19		-
Instruction of the state of the	Nominal thic	kness (mm)	Values	s (J)	
Impact strength	>	≤	mir	า	
		140	27 / -2	:0°C	
	Nominal thic	kness (mm)	Values	s (%)	
[>	≤	ma		_
Weldability		30	0,4		
	30	40	0,4		_
	40	140	0,4	2	
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical		` <i>'</i>	min	max	-
composition)	>	140		C: 0,18	-
co.ripodition)		140		J: 0,18 Mn: 1,50	
				P: 0,030	
				Cu : 0,55	
				S: 0,030	

No AMBE-2/07-CPR-13-1

1) Code of the product type: \$355JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Hallo

Date: 1.12.2021

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 10	056-2	·
l l	1/	Н	EN 10	0034	
Tolerances on	IP		EN 10		
dimensions and	Ĺ	J	EN 10	0279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	1
l t	>	≤	mi	n	
		16	35	5	
	16	40	34	5	
Yield strength	40	63	33		
1	63	80	32		
	80	100	31		
l F	100	140	29		_
	Nominal thic		Values		
	>	≤	min	max	
Tensile strength	=3	100	470	630	
- onone on ong	100	140	450	600	
-					
<u> </u>	Nominal thickness (mm)		Value		EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	2:		
	40	63	21 20		_
-	63 100	100 140	18		
	100	140	10)	
	Nominal thic	kness (mm)	Value	s (J)	
Impact strength	>	≤	m	n	
		140	27 / 2	20°C	
	Nominal thic	kness (mm)	Value	s (%)	
	>	≤	ma		
Weldability		30	0,4		
30		40	0,4		
	40	140	0,47		
Durability	Nominal thic	kness (mm)	Values (%)		-
		` '			
(Chemical composition)	>	≤ 140	min	max C:0,24	
oomposition)		140		C : 0,24 Si : 0,55	
				Mn : 1,60	
				P: 0,040	
				Cu: 0,55	
				S: 0,040	
				N: 0,012	

No AMBE-2/08-CPR-13-1

1) Code of the product type: \$355J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Hames

Date: 1.12.2021

Essential characteristic		Perfor	mance	Harmonised technical specification	
	l		FN 10	0056-2	
F	1/			0034	
Tolerances on	IP			0024	
	<u></u>			0279	
dimensions and shape		,	LIV	0213	
	Nominal thic	kness (mm)	Values	s (MPa)	
	>	≤	m	in	
		16		55	
-					
Yield strength	16	40		45	
	40	63	33	35	
	63	80	32	25	
ľ	80	100	3.	15	
	100	140	29	95	
	Nominal thic	kness (mm)	Values	s (MPa)	
	>	≤	min	max	
	=3	100	470	630	
Tensile strength	100	140	450	600	
	100			***	
				(0.1)	
	Nominal thickness (mm)		value	es (%)	EN 10025-1:2004
	>	≤	min		
Fla	=3	40	22		
Elongation	40	63	2	<u>!</u> 1	
	63	100	2	20	
	100	140	1	8	
	Nominal thic	cknoss (mm)	Value	es (J)	\dashv
Impact strength					
	>	≤ 140		iin 0°C	_
		· · · · · · · · · · · · · · · · · · ·			
	Nominal thic	kness (mm)	Value	es (%)	
	>	≤	m	ах	
Weldability		30	0,	45	
· ·	30	40	0,	47	
	40	140	0,	47	
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	
composition)		140		C: 0,20-0,22	
				Si: 0,55	
				Mn : 1,60	
				P: 0,035	
				Cu: 0,55	
				S: 0,035	
				N: 0,012	1

No AMBE-2/09-CPR-13-1

1) Code of the product type: \$355J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6
 T+34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Trans

Date: 1.12.2021

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 10	0056-2	<u> </u>
	1/	Н		0034	
Tolerances on	IP	N		0024	
dimensions and	Į	J	EN 1	0279	
shape					
	Nominal thic	kness (mm)	Values	s (MPa)	+
l	>	≤	m	in	
Ī	•	16		55	
l t	16	40		45	
Yield strength	40	63		35	
l	63	80		25	
	80	100		15	
 	100	140		95	
l l	100	140			
	Nominal thic	kness (mm)	Values	s (MPa)	
	>	≤	min	max	
Tensile strength	=3	100	470	630	
Tensile strength	100	140	450	600	
-					
	Nominal thickness (mm)			es (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	22 21		
	40 63	63 100		.0	_
-	100	100		8	
 	100	140		0	
	Nominal thic	kness (mm)	Value	es (J)	
Impact strength	>	≤	m	in	
		140	27 / -	20°C	
	Nominal thic	kness (mm)	Value	es (%)	
l [>	≤		ax	
Weldability		30		45	
	30	40		47	
	40	140	0,	47	
Durability	Nominal thic	kness (mm)	Values (%)		-
(Chemical		` <i>'</i>	min	max	
composition)	>	140	111111	C: 0,20-0,22	
22		140		C : 0,20-0,22 Si : 0,55	
				Mn : 1,60	
				Cu : 0,55	
				S: 0,030	
				P: 0,030	

No AMBE-2/10-CPR-13-1

1) Code of the product type: \$355K2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6
 T+34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Halingo.

Date: 1.12.2021

Essential characteristic		Perforr	nance	Harmonised technical specification	
	L		EN 10	056-2	
	1/	Н	EN 10		
Tolerances on	IP	N	EN 10		
dimensions and	l	J	EN 10	0279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	mi	n	
		16	35	5	
	16	40	34	5	
Yield strength	40	63	33		
l	63	80	32		
	80	100	31		
<u> </u>	100	140	29		
l	100	140	20		=
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
Tanaila atranath	=3	100	470	630	
Tensile strength	100	140	450	600	
	Nominal thickness (mm)		Value	s (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	22		
Liongation	40	63	21		
	63	100	20		_
l -	100	140	18	3	_
	Nominal thic	kness (mm)	Value	es (J)	
Impact strength	>	≤	mi	n	
		140	40 / -2	20°C	
	Nominal thic	kness (mm)	Value	s (%)	
	>	≤	ma		
Weldability		30	0,4		
l	30	40	0,4		
	40	140	0,4	17	
Durability	Nominal thic	kness (mm)	Value	s (%)	_
_		` '			
(Chemical	>	≤	min	max	_
composition)		140		C: 0,20-0,22	
				Si: 0,55	
				Mn : 1,60 Cu : 0,55	
				S: 0,030	
				P: 0,030	

No AMBE-4/05-CPR-13-1

1) Code of the product type: \$420M

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Transce

Date: 1.12.2021

Essential characteristic		Perfo	rmance	Harmonised technical specification	
1	L		FN 1	0056-2	
ļ	1/			10034	
Tolerances on	IP			10024	
dimensions and	l			10279	
shape					
	Nominal thic	kness (mm)	Value	s (MPa)	1
ļ l	>	≤	n	nin	
	·	16		20	
	16	40		.00	-
Yield strength	40	63		90	_
	63	80	_	80	4
[L	80	100		70	1
-	100	140	3	65	1
	Nominal thic	kness (mm)	Value	s (MPa)	1
	>	≤	min	max	
		40	520	680	
Tensile strength	40	63	500	660	
	63	80	480	640	
	80	100	470	630	
	100	140	460	620	1
	Nominal thickness (mm)		Valu	es (%)	EN 10025-1:2004
	> ≤			min	
Elongation		140		19	
Impact strength	Nominal thic	kness (mm)		es (J)	
	>	≤		nin	4
		140	40 /	-20°C	4
	Nominal thic	kness (mm)	Valu	es (%)	
	>	≤		nax	
Weldability		16	0	,43	
	16	40	0	,45	
	40	63	0	,46	
	63	140	0,47]
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	1
composition)	· · · · · · · · · · · · · · · · · · ·	140	AI: 0,02	C: 0,18 Ti: 0,05	1
' /			,	Mn : 1,70 Cr : 0,30	
			1	Si: 0,50 Mo: 0,20	
				P: 0,035 Ni: 0,80	
			1	S: 0,030 Cu: 0,55	
			1	Nb: 0,05 N: 0,025	
			<u> </u>	V: 0,12	

No AMBE-4/07-CPR-13-1

1) Code of the product type: \$460M According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Date: 1.12.2021

Nominal thickness (mm)	Essential characteristic		Perf	ormance	Harmonised technical specification	
PN		L		EN	10056-2	-
Nominal thickness (mm)	•	1/1	Н	EN	I 10034	
Nominal thickness (mm)	Tolerances on	IPI	١			
Nominal thickness (mm)	dimensions and	U		EN	l 10279	
S S Min Mi	shape					
16		Nominal thic	kness (mm)	Valu	es (MPa)	1
16	 	>	≤		min	
A0			16		460	
A0		16	40		440	
Composition	Yield strength					
Nominal thickness (mm) Values (MPa)	ļ					
Nominal thickness (mm)	<u> </u>					1
Nominal thickness (mm)	 					†
S S Min Max 40 540 720 40 63 530 710 63 80 510 690 80 100 500 680 100 140 490 660 Nominal thickness (mm)	ŀ	100	140			
Tensile strength		Nominal thic	kness (mm)	Valu	es (MPa)	1
A0		>	≤	min	max	
A 0 63 83 530 710 690 80 100 140 490 660 660 Nominal thickness (mm)	Tonoile etraneth		40	540	720	
80	rensile strength	40	63	530	710	
100		63	80			
Nominal thickness (mm) Values (%)						
S S min		100	140	490	660	
Nominal thickness (mm) Values (J)				Val		EN 10025-1:2004
Nominal thickness (mm) Values (J)		>				
S S Min Mi	Elongation		140		17	
S S Min Mi		Nominal thic	kness (mm)	Va	lues (J)	1
140	Impact strength	-				
Nominal thickness (mm) Values (%)		>		40		_
S S Max	-			1		_
Meldability						
16	Woldability	,				
40 63 0,47	weldability	16				
63 140 0,48 Durability Nominal thickness (mm) Values (%) (Chemical composition) 140 Al: 0,02						
Durability Nominal thickness (mm) Values (%) (Chemical composition) ≤ min max Composition) 140 Al: 0,02 C: 0,18 Ti: 0,05 Mn: 1,70 Cr: 0,30 Si: 0,60 Mo: 0,20 P: 0,035 Ni: 0,80 S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,025	ļ				<u>'</u>	
(Chemical S I Min Max Composition)				<u> </u>		
Al: 0,02 C: 0,18 Ti: 0,05 Mn: 1,70 Cr: 0,30 Si: 0,60 Mo: 0,20 P: 0,05 Ni: 0,80 S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,025	Durability	Nominal thic	kness (mm)			
Mn: 1,70	(Chemical	>				
Si: 0,60 Mo: 0,20 P: 0,035 Ni: 0,80 S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,025	composition)		140	AI: 0,02		
P: 0,035 Ni: 0,80 S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,025					· · · · · · · · · · · · · · · · · · ·	
S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,025					,	
Nb : 0,05 N : 0,025						
IV: U.12					V: 0,12	

No AMBE-5/01-CPR-13-1

1) Code of the product type: \$355J0W

According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Hanno

Date: 1.12.2021

Essential characteristic			Performance		Harmonised technical specification
	L		FN	EN 10056-2	
	1/H		EN 10036-2 EN 10034		-
		EN 10034		-	
Tolerances on			EN 10024 EN 10279		-
dimensions and shape	U		EN	10279	-
	Nominal thickness (mm)		Values (MPa)		
	> ≤		min		
	ŕ	16	355		
Yield strength	16	40	345		
ricia carongan	40	63	335		
	Nominal thickness (mm)		Values (MPa)		1
	>	≤	min	max	-
•	=3	40	470	630	
Tensile strength					-
l	40	63	470	630	4
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
		≤	min		
	> =3	40	22		
Elongation	40	63	21		
	40	03		21	
	Nominal thickness (mm)		Values (J)		
Impact strength			* *		-
	>	≤	min		-
		63	27 / 0°C		-
	Nominal thickness (mm)		Values (%)		
			may		-
l	>	≤	max		-
Weldability		16	0,52		4
	16	63	0,52		
					-
Durability	Nominal thic	kness (mm)	Values (%)		1
(Chemical			max	1	
composition)		63	Mn : 0,50	C: 0,16 Cr: 0,80	1
		03			
			Cu: 0,25	Si: 0,50	
			Cr : 0,40	P: 0,040	
				S: 0,040	
				N: 0,012	
				Mn : 1,50	
				Cu: 0,55]

No AMBE-5/02-CPR-13-1

1) Code of the product type: \$355J2W

According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Gipuzkoa, S.L.U.
 Fábrica de Bergara
 C/lbarra,6

20570 – Bergara (Guipúzcoa – España)
 T +34 943 76 19 40
 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 0086 BSI performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Jose María Galindo Quality Manager

Date: 1.12.2021

Essential characteristic			Performance		Harmonised technical specification
	L		EN 10056-2		<u> </u>
•	I/H		EN 10034		
Tolerances on	IPN		EN 10024		
dimensions and			EN 10279		
shape					
Yield strength	Nominal thickness (mm)		Values (MPa)		
	>	≤	min		
		16	355		
	16	40	345		1
	40	63	335		
	40	03	335		
					=
	Nominal thickness (mm)		Values (MPa)		7
 			min	max	\dashv
	> =3	40	470	630	
Tensile strength	40	63	470	630	
	40	03	470	630	
					=
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	22		
Liongation	40	63	21		
-	Non-to-141	()		Mala and O	
Impact strength	Nominal thickness (mm)			Values (J)	
	>	≤	min		
		63	27 / -20°C		
Weldability	Nominal thickness (mm)		Values (%)		
	>	≤	max		-
	40	16	0,52		-
	16	63	0,52		
Durability	Nominal thic	kness (mm)	Values (%)		7
(Chemical composition)	>	≤	min	max	=
		63	Mn : 0,50	C: 0,16	┪
' /		30	Cu : 0,25	Si: 0,50	
			Cr : 0,40	P: 0,035	
			1	S: 0,035	
				Mn : 1,50	
				Cu: 0,55	
				Cr : 0,80	